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A new unconditionally stable algorithm for steady-state fluid simulation of high
density plasmadischarge is suggested. The physical origin of restriction on simulation
time step is discussed and a new method to overcome it is explained. To compare
the new method with previous other methods, a one-dimensional fluid simulation of
inductively coupled plasma discharge is performea, 2001 Academic Press
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1. INTRODUCTION

A lot of research on high density plasma discharges such as inductively coupled pla:
(ICP), electron cyclotron resonance, and Helicon wave discharges is being conduc
because the progress in submicron electronic device fabrication demands a higher de
process optimization [1]. For transport modeling of high density plasma discharge, fl
simulation [2—-4] has been extensively used to study discharge characteristics, becaus
global insight on the profiles of quantities such as densities, temperatures, fluxes,
potential can be obtained. But for a stable fluid simulation of high density plasma, there
severe restrictions on the time steft] and the grid sizeAz), because the shielding time
scale of an electric field perturbation is very short, and the sheath length is quite small.

For the grid size £2) limitation, there are several methods to manage the restriction (
by modeling the sheath and plasma separately, and utilizing appropriate plasma-sh
boundary condition [4], (2) by utilizing upwind difference scheme, (3) by using exponenti
scheme [5], and so on. And for the time stext) restriction, the maximum time step is
concerned with various time scales: mean time of ionization and collision, particle a
energy confinementtime, Couranttime step, inverse of plasma frequegjcp(d dielectric
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relaxation time €4). The simulation time step using an explicit method cannot exceed tl
minimum value of those time scales. The most severe restriction is due t@gf-hend

14 [6]. As an example, for typical ICP discharge conditions, the minimum time step
the dielectric relaxation time-10-13 s, which is actually impractical. However, usually,
the main purpose of fluid simulation of the high density plasma discharges is not in-
description of a transient effect or wave excitations but in the achievement of steady-s
values. In fluid simulation of steady state, it is desirable to take a time step close to Cou
time step which is larger than;1 or 4.

Several methods to overcome the limitation on the simulation time step are sugge:
[2-4]. In[2, 3], they used time step larger tharusing a semiimplicit solution of Poisson’s
equation. However, as will be described in the next section, some more demands for
provement on the stability and the accuracy still remain.

Therefore, in this work, we suggest a new stable and accurate method by imitatin
realistic, physical shielding process of electric field perturbation to overcome the dielec
limitation on time step. The new method is applied to a one-dimensional ICP discha
model, and the simulation results are compared with previous methods. Section 2 desc
details of the new method, and Section 3 presents the simulation results using the pre
method compared with other methods.

2. DESCRIPTION OF THE NEW ALGORITHM

The usually adopted set of equations for fluid simulation of high density plasma dischar
are the continuity, momentum, Poisson, and electron temperature equations.

an;
a—tl + V - T} = vignNe, @)
an
_ € + V - I'e = vignhe, (2)
at
Ty  en 1
a—tlsz—Uiri _Mv(ni-ri)v (3)
ar en 1
S = B vele— —V(neTo). )
V.-E=4re(n —ne), )
39(ngTe)
é a(-et e — —VQ—eFeE+ Pext_ PC0||1 (6)

wherel is ion flux, T's is electron fluxp; is ion densityne is electron densityio, is the
ionization collision frequenc! is ion massy; is ion neutral collision frequency; is ion
temperaturem is electron massy is electron neutral collision frequency is electron
temperatureP. is collisional power loss per volum@)is electron energy flux, anBLy is
externally applied power per volume. Here the stress term in Egs. (3) and (4) is neglec
For the electron momentum equation, we followed the procedure presented in [2, 3], anc
the ion momentum equation, although we can include and calculate it directly, we excli
it for the sake of convenience in the development of the new method. When Eq. (5) is sol
along with Eq. (2) in an explicit time integration scheme, the severe time step limitati
occurs.



552 CHOE ET AL.

To overcome the limitation, we rearrange the given equations. Equations (1) and (2) ¢

an

—+V.-I'=0, 7

ot + ™
wheren = n; — ngandIl’ = I'; — T'e. Substitution of the time derivative of Poisson’s equa-
tion to Eq. (7) gives

oE
V. (at +4neI‘> =V (4rdo) =0, (8)

where Jio; is the total current density. Using the differential form of Faraday'’s law o
electromagnetic induction, we can express the term in large parentheSes &B). In
this work, we will develop a new method for overcoming the time step limitation for th
case of the term in large parentheses, total curtkg} being zero:

9E
4ndior =V x (CB) = - + dmel’ = 0. 9)

Since we are focusing on developing quantities which describe a plasma in steady state
can assume that the time derivative of the electric field will be zero. And, by ambipolari
the conduction current will also be zemd; = T’ impliesT" = 0. There, surely, exist cases
where total current density is not zero. For instance, we can consider the case for
capacitive radio frequency discharge, where a net current across plasma exists. And v
the direction of ion flux and that of the electron flux differ from each other, current generat
by electrons and ions out of plasma, and flowing through the conducting chamber w
exists, st # 0. In this preliminary study, we only deal with the simple cakg,= 0,
and a method for managinlg: £ 0 will be developed in future work.

In applying finite difference method (FDM) in time evolution, we have to integrat
dE/0ot + 4rel’ = 0 during finite time stepAt

At E
/ {a— + 4nel"(t)] =0,
o | ot

where 0< t < At. Then we have

At
AE = E(At) — E(0) = —471e/ T'(t)dt, (10)
0
Ap = 1y AE (11)
P=a-aV" (AE),

where AE and Ap represent the time variation of electric field and charge density befo
and after simulation time step, respectively. The first idea of the present method is to rep|
the electron continuity equation with Eq. (11). First, we obtain the time variation of tt
electric field AE) during a simulation time step. Second, we calculate the charge dens
variation (Ap) using Poisson’s equation. And finally we get electron density change usil
Ane = Anj — Ap. The second idea lies in the method to obtain the FDM form of Eq. (10
In the explicit and implicit methodd; is assumed to be constant during the integration
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When the explicit method is used, by usifi¢¢) = I'(0), we have

SE(t) = —4m el O)t, (12)
and for the implicit method, by applying(t) = I'At), we get

SE(t) = —4mel'(Ab)t, (13)

whereSE(t) is the time variation of electric field during® t < At, andAt isthe simulation
time step. Figure 1 shows&(t) for three methods (explicit, implicit, and our method) with
realistic physical damping of electric field perturbation whose relaxation tim&iasically,
the explicit method uses the time derivative of the value-at0; if the derivative is large

it would make a numerical problem. Thus this method is applicable when time ster
much smallerr: At « 7. SE(t) in the explicit method is overestimated for time step large
than the relaxation timeAt > t. The overestimation will change the signsé and cause
numerical instability. On the other hand, since the implicit method uses time advanc
I'(At), itis numerically stable even if the simulation time step is larger than the relaxati
time: At > . But SE is underestimated; therefore the implicit method cannot assure t
accuracy. Because the implicit method utilizes the time derivative of the value att,

for cases when the derivative is small, it will take a small value. To sum up, the explicit a
implicit methods cannot achieve numerical stability or sufficient accuracy for large tir
step. We will develop a numerically stable and accurate method by imitating the physi
shielding process of electric field perturbation.

We calculate the integral without the assumption thas constant during integration.
LetTi(t) = Lo + 8T (), Te(t) = Teo + 8Te(t), p(t) = po + dp(t), and letE(t) = Eo +
SE(t) during the simulation time step, 8t < At. Here subscript “0” indicates values
before time evolution of quantities, and™represents the time variation of quantities

SE A Implicit method:
stable but inaccurate if At > <

Realistic physical <\
damping of electric
field perturbation

with relaxation time t

New method (dash line):
stable and accurate even if At > 1

\
-

t=At

T~ Explicit method:
unstable and inaccurate unless At <<t

FIG. 1. lllustration showing physical change of electric perturbation and numerically calculated values -
various methods.
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during simulation time step. If the electric field is dealt with implicitly, and densities an
temperatures are treated explicitly, then momentum equations become

(8T 2
O _ o se_ Ty, (14)
ot 4rre
9(8Te) w?
= ——CSE —vedTe(0 < t < At 15
at Are vedl'e(0 <t < ), ( )

where w; and we are ion and electron plasma frequencies respectively. #aMHt +
4rrel’ = 0 becomes

ISE(t)
at

wherely = Tjp — T'eganddT'(t) = 6T (t) — ST(t). The time variation of charge density is

= —4re[ly+sT(t)] (0<t < At), (16)

sp(t) = 1V(SEt) 17)
o(t) = HE : ().
Solving Egs. (14) and (15), we have
2 t
ST = 1 exp(—uit) / exp(vi£)SE(£)dE, (18)
4rre 0
2 t
ST = — e exp(—vet)/ exp(vef)SE(E)dE (0 <t < At). (19)
4re 0
Equations (16), (18), and (19) yield
t [ a—ve(t—£) —vi (t—§)
PE _ —4neI‘o+/ {e + _ L)k, (20)
ot 0 Te T Tq] 0§

wherete = ve/w?, i = vi/w?, and Y14 = 1/ + 1/7. Itis noticeable that the process of
reaching Eq. (20) is similar to that of obtaining the exponential scheme [5] which is used
removing grid size restriction. Equation (20) is the Volterra equation of special type becal
the kernel in the equation depends only on the difference of the two argurnengs,

Two initial conditions for§E are required to solve Eq. (20), and it is given by

[96E
[8E]t:0 =0, :l = —4gyel’,. (21)
L ot t=0

Afte r some algebra, the solution of Eq. (20) becomes

3
SE(t) = —4melo|ta+ » % exp(sct)
k=1

: (22)

where

[(Tevi + Tive)S123 + (Te + T)vevi][S231 — S3.1.2]
7 Te(S1 — ) (S — ) (S8 — S1)

Ri23=

’

ands; » 3 are the zeros of

v Vi 1 1
$*+ (ve +1)s* + (vevi +T—_e+—')s+ (——i——_) vevi = 0.

i Te Te Ti
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This equation predicts electric field of future time. We can simplify Eq. (22) for tw
cases.

First, if collision frequenciese andv; are sufficiently large that the two exponential
terms in Eq. (20) can be neglected, then Eq. (22) becomes

SE(t) = —4melgty {1 — exp(—%)} . (23)
d

Second, utilizing the fact that; <« we implieste « 17, We can neglect the second term
in the integrand in Eqg. (20). In this case, we have

R R
SE(t) = —4rely {rd + — expsit) + — exp(sgt)} , (24)
S $
where
1/tc = ve+ 1/7,
R1,2 -+ (Td — Te)S1,2 — "-'e‘)e7
T4Te(S1 — S2)
and

=Lt £ /1/12 — 4ve/1q
= > :

S1,2

ThedsE in Eq. (24) can be classified by collision dominance.

(1) If ve > 2we + 1/1;, when the collision is dominarg; ; is real and negative. Since the
collision frequency is large in this casé; eventually comes to that in Eq. (23). This case of
high collision frequency can be found in plasmas display paifgls: 4 eV,ne ~ 10cm™3,
and gas pressure is hundreds of Torr, which impdy 2 ve — 1/7.

(2) If ve < 2we + 1/7;, When collision is not dominandE is expressed as

C

R
SE(t) = —4rely {rd + 2‘551

cogét +0) exp(—;)] , (25)

where¢ = Zwe\/l — ([ve+ 1/te — 1/14] /2we)?, 6 = arg(Rl/sf). This is the case when
the collision is not dominant. This is applicable for typical ICP discharge conditions. Tl
oscillation term in Eq. (25) appears to be due to the imaginary parbptnd its oscillation
frequencyé depends on plasma frequency, electron neutral collision frequency, and diel
tric relaxation time which characterize the relaxation time scale of electric field. That
& reflects the transient effects. Since we give our attention not to the transient effect bt
steady state, we trace the oscillation center. This can be achieved by settingtces)

to cog0). Actually, it does not matter in simulation if we adapt > ., which implies the
second term in the parentheses goes to zero. Summarizing, we have solved Eqg. (16);
collisionis dominant, the solutionis givenin Eq. (23). In this case the relaxation time scale
the electric field is the dielectric relaxation time. If the collision is not dominant, the solutic
is given by Eq. (25), and in this case the relaxation time scale of electric field mnd;.
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Finally, sinceSE(t) is calculatedAE, Ap, andAn, are given by

AE = SE(AU), (26)
1

Ap = —V . (ABE), 27

P= s (AE) (27)

Ane = Anj — Ap, (28)

whereA is the difference of values before and after simulation time step. The flow chart
the new method is given in Fig. 2. The main algorithm is the substitution of the electron c
tinuity equation as follows: We calculate successively (1) the time variation of electric fie
(AE) using Eqg. (22), (2) the time variation of charge density ugipg= V - (AE)/(4re),
and (3) the time variation of electron density usihge = An; — Ap.

Therefore the new method overcoming the time step limitation is developed and is |
conditionally stable. It is noticeable that the procedure for making a finite difference for
in the new method resembles that in exponential scheme [5].

3. ONE-DIMENSIONAL FLUID SIMULATION RESULTS AND DISCUSSIONS

As an example application of the present method, a one-dimensional fluid simulatior
Ar plasma discharge is performed. The fluid equations for describing this case are

an; ol
oo _ % R 29
ot 57 T Re (29)
JoE
37 + 4 (30)
aTl en 1a(nT)
LI ) SR | — , 31
M- T M 8z 1)
Input parameters
(Pressure, Power)
\1, <€ te t+AL

I, T,
( momentum equation)

Convergence - Output parameters
" test (0,0, To0.E,p.T;, T)
(ion continuity equation) 1\

| [AE: Eq.(22) § T,

H | Temperature equation)
H 1 —>| An= Anj-Ap | = (Temp 4

i Ap = 4—V . (AE ) e e ! q)

: e i . R .

: (Poisson’s equation)

__________________________________________________

Replacement of electron continuity equation

FIG. 2. Schematic diagram (flow chart) of algorithm.
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aI’ 1 0(neT,
Mo _ _Eep  \or,— 2 0Mele), (32)
ot m m 0z
0E
37 = 4re(ni —Ne), (33)
30(NeTe) 0
é 3et = - _37(22 - eFeE + Pext_ PcoII’ (34)

whereR;; is the ionization rate per volume and other variables are mentioned in previc
section. We can see that electron continuity equation is replacedlgita 0. Since our
method is not sensitive to boundary conditions, we take simple boundary conditiens;
Ne=0,n =0,0Te/3z= 0, andaTj ¢/3z=0

Inthe finite difference expression of fluxes, we applied an exponential scheme [7] bece
it provides numerically stable estimates of the particle flux. Finite difference forms beco

1
M =M Tz = M
At Az

+ Ry, (35)

A EI?I%Q = —4re(I ;12 — Tokr2)
At
COY0k+1/2) exp(— ) } s (36)
Tc k+1/2

1
1 AE L, — AR,

Rikt1/2

X [Td k+1/2 + 2‘

k+1/2

AptH 37
Pi " 4re Az (37)
Nk’ = NG+ Nkt = nfy — Aot (38)
P4 1 Iy k+1/2 T2
ez T At
Pi k+1/2 n Pi k+1/2 EXP(Pi k+1/2) n
= Aikt1 2{—”- - Nik| > (39)
21— exppiga) K 1—exp(pikiya)
Fn + 1 1-‘e k+1/2 — 1—‘g,k+1/2
eki1z ¥ oo At
Pek+1/2 n Pek+1/2 EXP(Pek+1/2)
21— exp( Peki1j2) KT 1 — exp(Pek+1/2) k
¢n+l 2¢n+l+¢n+1
kil (Az2? = —4ze(nit —ndid) (41)
Tok ' — T _ Tok " Ukry1 — Ui B Ukr1/2Tehr1y2 — Uk-12Tak 12
At 3 Az AZ
2 (9q 2 Pexik — Peollk &T”J’l 42
“am, \az), T3 nP TRl (42)
ek e k ek

where subscrigk ork + 1/2 indicate space grid location, superscrifinplies currenttime
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level variablesn + 1 stands for the future time level variables to be solved for, /i E
or p means difference of values between time stepsl andn.

And
1 1
(99/02)k = =5{ng 12 Teks12(Toksr — Tek ) /AZ =gy 10Tk 12
x (ToRt = TO) /az) /(2mvaZ)
Aiki12 = Ti /My ki12AZ,
Pik+12 = €Br12A2Z/ T,
Acki12 = Teky1/2/Mveky1/2AZ,
Pekr1/2 = —€B11/2A2/ Teky1/2
and

Uks1/2 = Deky1/2/Nekt1/2-

We assume that, as is usual for the ICP discharge, the local power deposition prc
is Pext = Poexp(—2z/8), wheres is a skin depth; the ionization rate &, = vi;ne, where
vi; = Nnoizve(Te) €Xp(—eiz/ Te). Hereny is neutral gas density;, is constantye is electron
mean thermal speed, agg is the ionization energy.

For comparison with other method, we considered a semiimplicit method [2] as follov
Poisson’s equation at the future time level is

(82¢n+1> —47'[6( nn+L ng+1)
k

072

. (43)

The finite difference form of electron density equation can be written as

an
0t =nl, + At( a?k> :

and(ane/dt) is obtained from time advanced potential:

an e 9 dpntt 1 9%(n0Tn
e'k = — —_— ng ¢ + M + RiZ k-
ot Mve 0Z 9z |, mve 072 ) ’

n+1

When obtainingn**, we did not use time advanced potential. The substitutionot,
ni+tinto Eq. (43) gives

32¢n+1 ann 8¢ﬂ+1
1+ 4weAtuen?), | ——s— 4reAt —=£ 44
(L-+dmentye e)k[ 07 L+ g @‘(az)( 52 ﬂk 49
1 nAT!h
= —4re(nf* —nY), + 4reAt — (87;;)+R21 , (45)
e
k

whereye = e/muve. Solving this equation we could obtapi™. In the semiimplicit method,
the time derivative of electron flux is neglected.

Figure 3 shows profiles of electron density, potential, and temperature underate
500 W. 500 mesh is used in Fig. 3. The maximum allowed time step for stable soluti
is 101! for the semiimplicit method and & 1071%s for the new method. The simulation
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proposed new method
semi-implicit method

[Ad]2L

4 6
z [cm]

FIG. 3. Electron densityrfe), potential ¢), and electron temperatur&] profiles for a pressure of 1@Torr
and 500 W Ar plasma: Solid line for proposed method and dashed line for semiimplicit method.

time step depends on the number of mesh points used. For example, when 30 mesh
are usedAt for the semiimplicit method is 1@'s and for the new method is 19s.
This dependence of time step on mesh points is due to Courant time step. For simule
conditions, ifv ~ 10’ cm/s andAz ~ 10/N cm, whereN is the number of mesh points,
then the Courant time step is about 8 for 30 mesh points and 1®s for 500 mesh
points. Comparison between two methods yields good agreement in profile even tho
maximum time step for stable solution in the new method is about 10 times larger than 1
in the semiimplicit method.

25

20

0.5

0.0

20 30 40 50
Pressure [ImTorr]

20

18

—
N

[310A] ¢ ¢ [AD]°LS

14

12

10

B O n
® O ¢
A A 5T,

- filled scatters:
proposed method
-hollow scatters:
semi-implicit method

FIG. 4. Electron densityrfe, square), potential, circle), and electron temperaturk (triangle) vs pressure
for 500 W: Solid line for global modeling, filled scatters for proposed method, and hollow scatters for semiimpli

method.
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Figure 4 shows electron density and temperature, and potential for various press
and 500 W power. The real line is obtained from a global model [8] and the scat
data from fluid simulations: filled scatters correspond to the proposed method, and |
low scatters correspond to the semiimplicit method. All three parameters for presst
are in good agreement among the three methods. The simulation time step for the
method is larger than that for the semiimplicit method by several orders of magnitude.
spite of larger time step, the two methods show almost the same results. Global mode
results in the same qualitative trends as the other two methods with some difference
guantities.

4. CONCLUSIONS

We developed a new method to overcome the dielectric relaxation time restriction
steady-state fluid simulation of high density plasma discharges when the local ambipola
is satisfied. The new method is successfully developed based on (1) replacement of ele
continuity equation with differential form of Faraday’s law of induction for cases whe
Jiot = 0 and (2) imitating the physical shielding process of electric perturbation. It w:
discussed that the present method is unconditionally stable and more accurate thar
implicit method.

The exponential method [7] gives numerically stable estimates of particle flux even thot
the voltage between mesh points is compatible or larger than the characteristic Brigrgy
(D is the diffusion coefficient and is the mobility), and thus it enables us to use the large
mesh size. However, there still remains the restriction on the time step in the applicatior
the exponential scheme alone. The new method provides stable values of electron de
although the simulation time step is larger than the dielectric relaxation time &teig;
restricted only by Courant time step in the new method. Application of the new meth
to the fluid simulation without the exponential method needs the fine mesh size, and
allows the small simulation time step because the fine mesh size makes Courant time
small. By using both the exponential method for the large mesh size and the new met
for the large time step, we could save much computation time, because the larger n
size gives the larger Courant time step, which permits the larger simulation time step. £
the results using the new method with the exponential method are in good agreement
those using semiimplicit method. Although the method in this paper is developed ol
for cases when the local ambipolarity is satisfidg; = 0) and applicable for such cases,
the simplified model provides fundamental ideas to manage the time step restriction
replacing the electron continuity equation. For more general application, the developm
of methods for cases when the total current density exists will be done in future work.
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